

THE4BEES – Energiesparen in Schulen

B. Vockner, C. Atzl, R. Vogler – RSA iSPACE 7. Dezember 2017

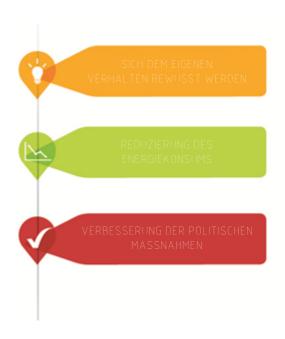
Wer sind wir? Was machen wir?

Was ist THE4BEES?

- EU Interreg Alpine Space Projekt
- Steht für TRANSNATIONAL HOLISTIC ECOSYSTEM
 BETTER ENERGY EFFICIENCY THROUGH SOCIAL INNOVATION

Überlegung:

ENERGIE WIRD VON MENSCHEN VERBRAUCHT, NICHT VON GEBÄUDEN



Was ist THE4BEES?

Projektziele:

Wer ist beteiligt?

» Salzburg ist eine dieser Regionen

Was ist unser Ziel?

Bewusstseinsbildung hinsichtlich Konsum von Ressourcen mithilfe von Storytelling Maps

2050

- Minus 30% GHG emissions
- 50% share of renewables

All buildings owned by the federal state of Salzburg are supplied by 100% district heating or renewable energy carriers.

- Minus 50% GHG emissions
- · 65% share of renewables

Electricity in Salzburg is produced to 100% by renewables. Hot water is produced to 100% by solar energy.

- Minus 75% GHG emissions
- 80% share of renewables

Space heating in Salzburg is produced to 100% by renewables or district heating.

- Climate neutral
- **Energy autonomic**
- sustainable

Welche Partnerschulen haben wir in Österreich?

- **HTL Itzling**
- **BORG Oberndorf**

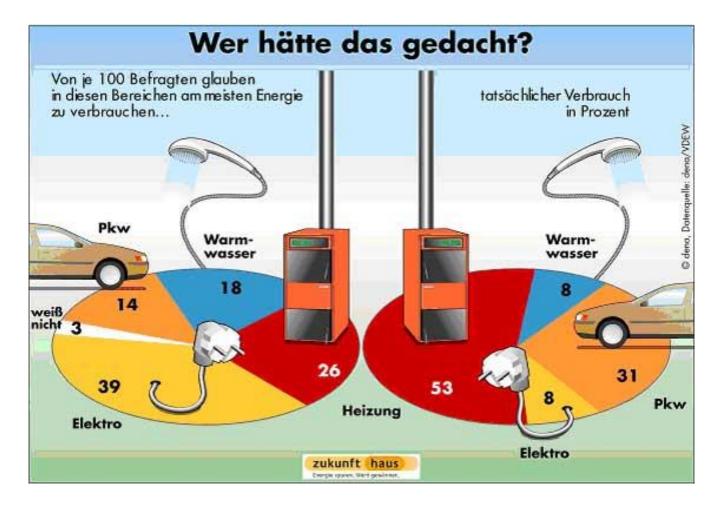
Agenda

07:50 - 08:40	Allgemeine Projektvorstellung THE4BEES
08:45 - 09:30	Aufteilung in Gruppen & Aufgabenvorstellung
	Gruppe 1: Sensoren und Wärmebildkamera
	Gruppe 2: Gebäude
09:50 - 10:40	Gruppe 1: Registrierung/Platzierung der Sensoren im 3D-Raum
	Gruppe 2: Messen und Digitalisieren
10:45 - 11:30	Gruppe 1: Livedemo Sensordatenprozessierung
	Gruppe 2: Digitalisieren
11:45 – 12:35	Informationsaustausch der Gruppen
12:40 – 13:00	Feedbackrunde & What's next

Was ist ein Hitzeindex?

in Einheiten der Temperatur angegebene Größe zur Beschreibung der **gefühlten Temperatur** auf Basis der gemessenen Lufttemperatur sowie vor allem der relativen Luftfeuchtigkeit

Lufttemperatur	27°C	32°C	35°C	38°C	41°C	
	Empfindung wie					
30% r.F.	26°C	32°C	36°C	40°C	45°C	
50% r.F.	27°C	36°C	42°C	49°C	54°C	
60% r.F.	28°C	38°C	46°C	58°C	65°C	
70% r.F.	29°C	41°C	51°C	62°C		
80% r.F.	30°C	45°C	58°C			
32°C - 41°C	Muskelkrämpfe oder Hitzeschwäche möglich					
41°C – 45°C	Muskelkrämpfe oder Hitzeschwäche wahrscheinlich, Hitzeschlag möglich					
45°C und mehr	Lebensbedrohender Hitzeschlag oder Wärmetod					



Wie viel Energie konsumieren wir?

Wie viel Energie konsumieren wir?

Stromverbrauch österr. Haushalt: 3.500 kWh/Jahr

- Heizung
 - Haushalt: 15 kWh / Pers / Tag
 - Arbeitsplatz, öffentlicher Raum: 7 kWh / Pers / Tag

- Mit einer kWh kann ...
 - eine Energiesparlampe mit 12 W 83 Stunden leuchten
 - eine Tonne Stahl auf 367 m hoch gehoben werden
 - 10 Liter Wasser um 86°C erwärmt werden
 - 100 Stunden Musik im CD-Player gehört werden

Was sind Karten?

Analog vs. digital?

Statisch vs. dynamisch?

Aber:

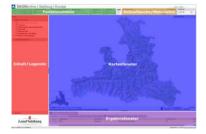
- Es gibt statische Webkarten
- Es gibt dynamische analoge Karten

Was sind statische Karten?

Statische Karten

- Man kann entscheiden, was der Nutzer sehen soll (vordefinierte Größe, Farbe, Maßstab)
- Kann gedruckt werden
- Hat Kartenelemente (Legende, Nordpfeil, Maßstabsbalken) zur Orientierung

- Keine Interaktion möglich
- Kein zusätzliches Material
- Möglicherweise nicht aktuell



Was sind dynamische Karten?

SAGIS →

Interaktive Karten

- Dynamische Repräsentation
- Nutzer können die Karte interaktiv verwenden
- Nutzer können die Karte verändern
- Zusätzliche Integration von Multimedia-Daten möglich

- Manche Kartenelemente werden nicht mehr verwendet (Legende, Maßstab)
- Man kann den Nutzer nicht so gezielt "leiten"
- Netzwerkabhängigkeit (Internet, Server)

Ausblick Storytelling Maps

Was sind Storytelling Maps?

- Man kann den Nutzer gezielt führen: Was, wann, wo ...
- Ansprechende und informative Kombination aus Karten, Text, Bildern und Multimediainhalten

Was sind Storytelling Maps?

und Nutzererfahrungen

Eine **Storytelling Map** ist eine Webkarte als Kombination von interaktiven Karten, Multimediainhalte,

(Esri 2015)


Sources: https://www.wilsoncenter.org/sites/default/files/carroll_story_maps.pdf

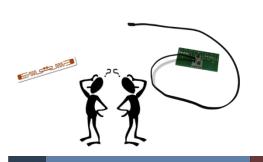
Beispiel Storytelling Map

http://arcg.is/2fh34He

http://arcg.is/2cma7uz

Tasks

B. Vockner, C. Atzl, R. Vogler – RSA iSPACE 7. Dezember 2017



Eure Tasks

Technologie

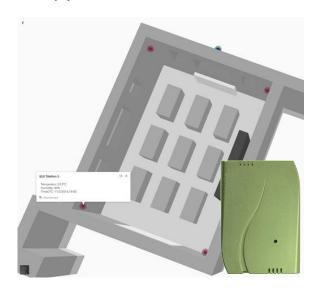
- Sensorsystem aufbauen
- Sensoren kontrollieren
- Tägliches Protokoll schreiben

Analyse

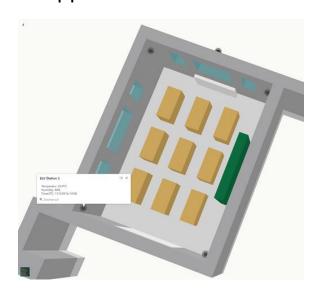
- Wertet die Messungen aus
- Bewertet und vergleicht die Ergebnisse

Kommunikation

- Gebäudeinformationen
- Stories und Szenarios definieren
- Storytelling Maps



Eure Tasks


Gruppe 1

Sensoren

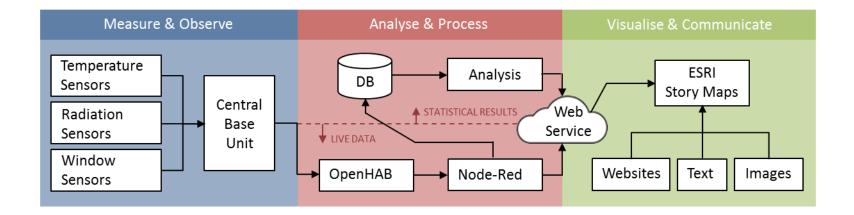
- Einrichten
- Anlernen
- Verteilen

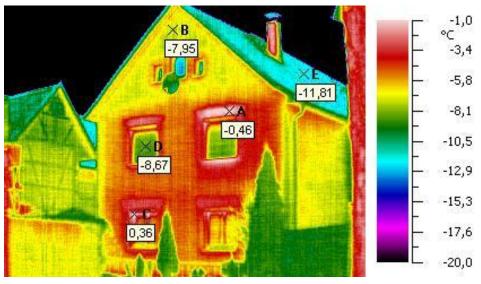
Gruppe 2

Gebäude

- Messen
- Kartieren
- Zeichnen

- Wie können wir den Energieverbrauch 'messbar' abschätzen?
 - Homematic Sensoren
 - 1. Basisstation/Zentrale
 - 2. Fenstersensor
 - 3. Temperatur und Luftfeuchtesensor
 - 4. Heizungsthermostat
 - 5. Stromverbrauch
 - 6. CO₂-Messgerät
 - Raspberry PI





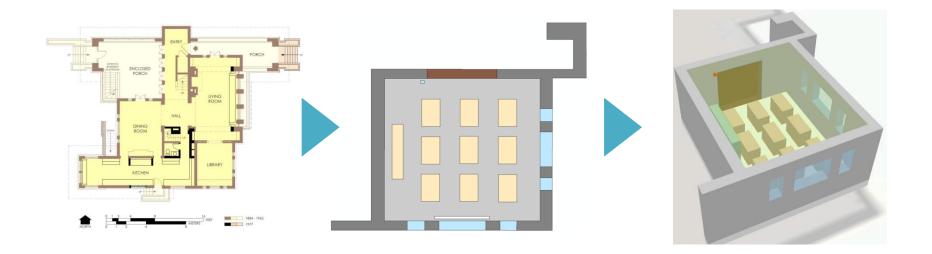
- Kennenlernen der Funktionsweise einer Wärmebildkamera
 - Aufnahme in Graustufen
 - Falschfarben-Darstellung

- Aufgaben:
 - Sensoren auspacken
 - An die Basisstation anlernen
 - Sensoren einstellen
 - Sensoren sinnvoll verteilen
 - Wärmebildkameraaufnahmen durchführen

Gruppe 2: Gebäude

Wie wissen wir, wo die Sensoren verteilt sind, bzw. welche

Werte gemessen werden?



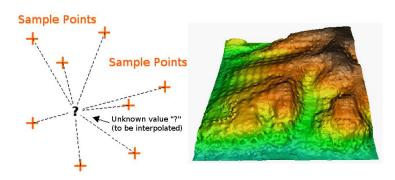
Remote Sensor Unit (RSU)

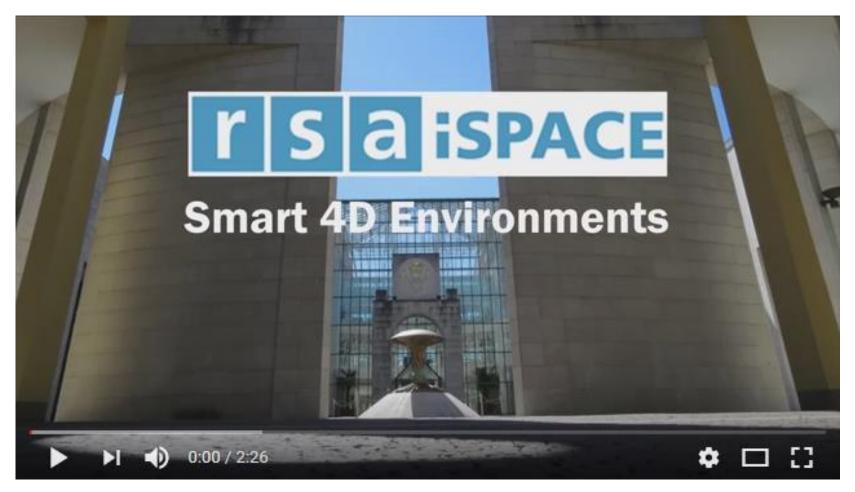
Gruppe 2: Gebäude

Gebäudepläne als Grundlage für die Visualisierung

Gruppe 2: Gebäude

- Aufgaben:
 - Fenster, Türen, Möbel im Gebäudeplan einzeichnen
 - Elemente vermessen
 - Gebäude am PC zeichnen





Ausblick: Analysen - Interpolationsmethoden

Ausblick: 3D - 4D

https://www.youtube.com/watch?v=iEbu0dkgirU

Gruppenbildung

Gruppe 1: Sensoren

Gruppe 2: Gebäude

Thema 1: Sensoren + Wärmebildkamera

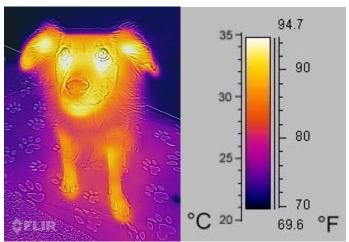
B. Vockner, C. Atzl, R. Vogler – RSA iSPACE 7. Dezember 2017

Agenda

- Brainstorming Wärmeverluste
- Allgemeine Vorstellung der Sensoren und der Wärmebildkamera
- Untergruppe Sensoren
 - Schritt 1: Anlernen der Sensoren
 - Schritt 2: Platzieren der Sensoren
- Untergruppe Wärmebildkamera
- → Gruppenwechsel!

Brainstorming

Wo sind die größten Wärmeverluste im Klassenzimmer?



- Wie funktioniert eine Wärmebildkamera?
 - Prinzipiell wie eine normale elektronische Kamera für (sichtbares) Licht
 - Sensoren unterscheiden sich in Aufbau und Funktionsweise je nach zu detektierender Wellenlänge
 - Aufnahme in Graustufen
 - Falschfarben-Darstellung

Wie funktioniert eine Wärmebildkamera?

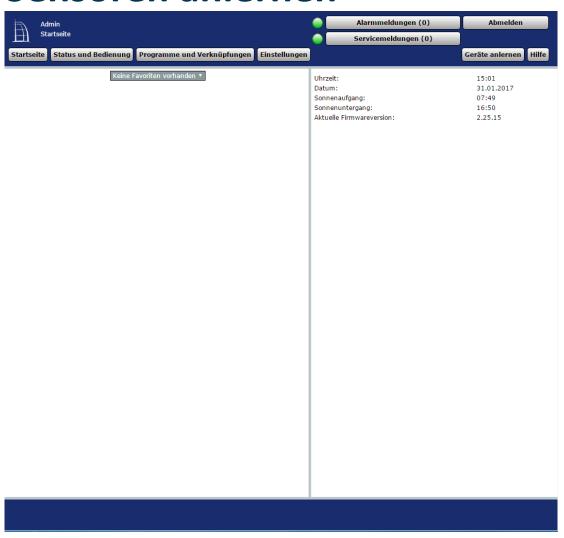
- Prinzipiell wie eine normale elektronische Kamera für (sichtbares)
 Licht
- Sensoren unterscheiden sich in Aufbau und Funktionsweise je nach zu detektierender Wellenlänge
- Aufnahme in Graustufen
- Falschfarben-Darstellung

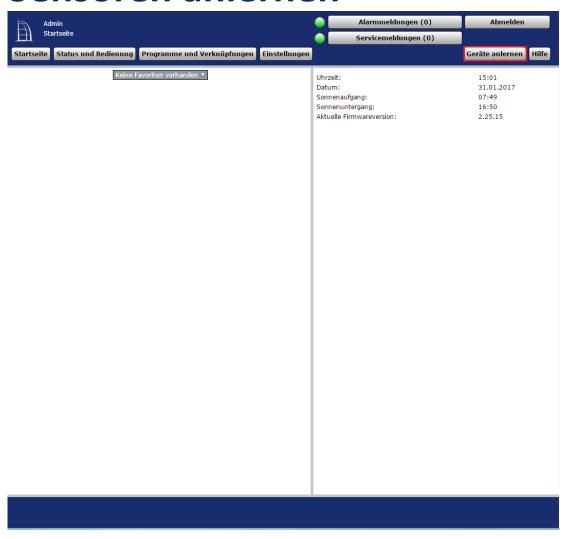
Exemplarische Wärmebildaufnahmen

Gruppe 1: Sensoren + Wärmebildkamera

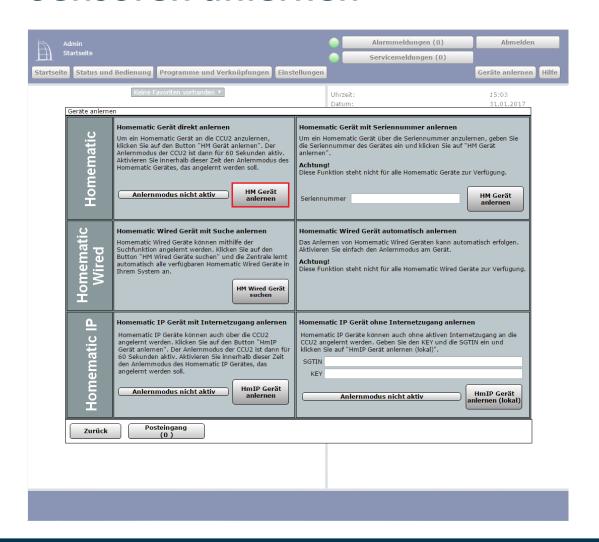
- Wie können wir den Energieverbrauch ,messbar' abschätzen?
 - Homematic Sensoren
 - 1. Basisstation/Zentrale
 - 2. Fenstersensor
 - 3. Temperatur und Luftfeuchtesensor
 - 4. Heizungsthermostat
 - 5. Stromverbrauch
 - 6. CO₂-Messgerät

Raspberry PI

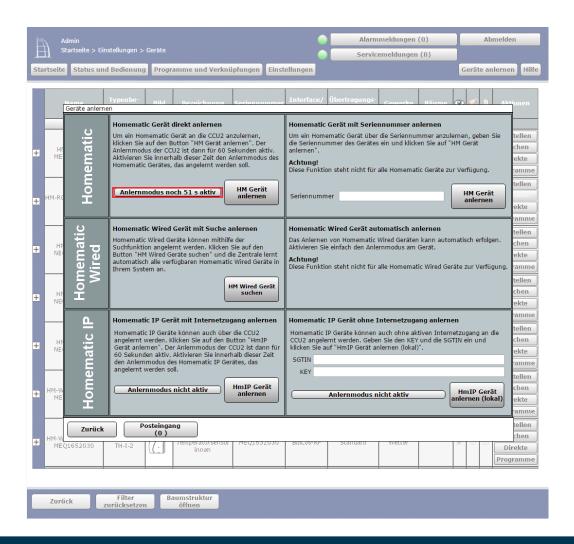




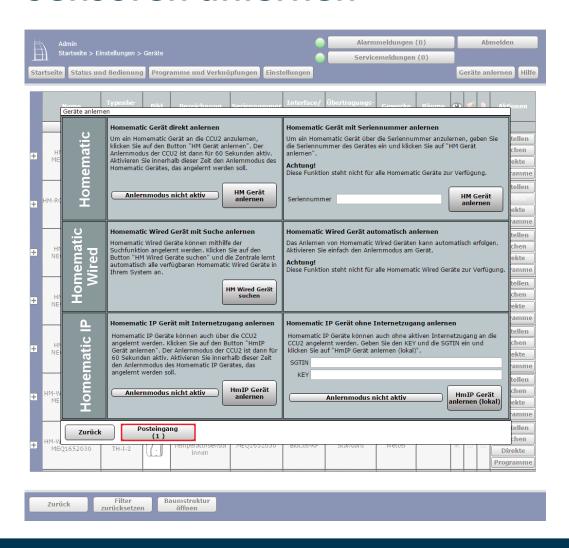
Im Webbrowser folgende Seite öffnen: http://iqlabmobile.dyn dns.org:44



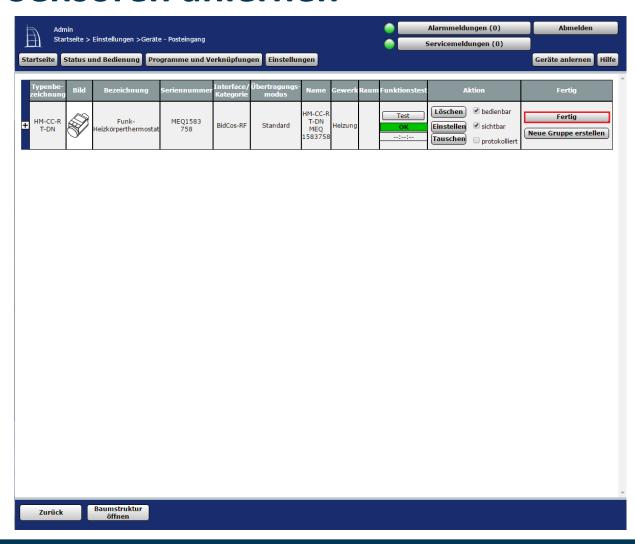
Auf "Geräte anlernen" klicken



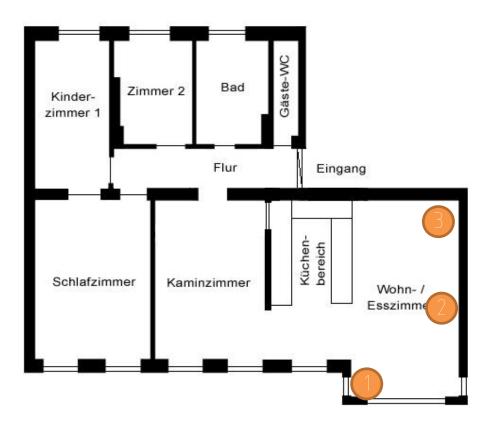
Auf "HM Geräte anlernen" klicken



- Anlernmodus ist jetzt 1 Minute aktiv
- Innerhalb dieser Zeit, das anzulernende Gerät in den Anlernmodus versetzen (Knopfdruck)



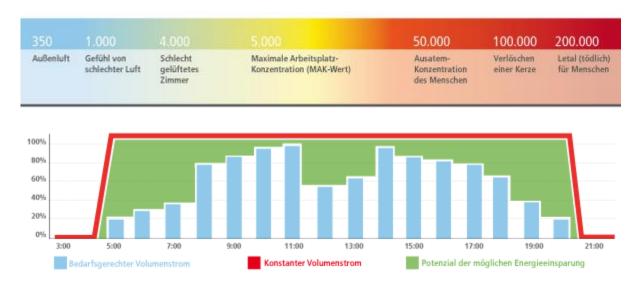
- Nach Ablauf einer Minute wird im Posteingang eine neue Nachricht angezeigt
- Auf "Posteingang" klicken



- Das angelernte Gerät wird nun angezeigt
- Auf "Fertig" klicken

Sensorplatzierung

Wo ist der optimale Platz f
ür den jeweiligen Sensor?


Sensorplatzierung

- Temperatur und Luftfeuchte:
 - Die Platzierung hat starke Auswirkungen auf die Messung!
 - Tipps zur Platzierung:
 - Nicht bei Türen und Heizungen
 - Ein wenig entfernt von der Zimmerdecke
 - Fühlt sich ein Raum wärmer/kälter als andere an, kann es an der Sensorplatzierung liegen
 - Lösung: Sensor versetzen oder Temperatureinstellung anpassen

Sensorplatzierung

Kohlenstoffdioxid

- CO₂ ist schwerer als Luft, sinkt daher zu Boden
- Daher sollte der Sensor in Bodennähe platziert werden (ca. 15-30 cm über Boden)

Recap Brainstorming

 Was zeigt die Wärmebildkamera, wo tatsächlich die größten Wärmeverluste auftreten?



- Beispiel: Das "Ist-der-Herd-an?"-Problem
 - Man fährt auf Urlaub
 - Am Flughafen fällt einem ein: Ist der Herd ausgeschaltet?
 - Ohne Echtzeitdaten: Jemand muss hinfahren
 - Mit Echtzeitdaten: Blick aufs Handy verrrät → der Herd ist aus!
 - Beruhigte Fahrt in den Urlaub

an alarm is sent to your smartphone if you are on holiday.

- Es gibt zahlreiche weitere Beispiele:
 - Busmonitor
 - Wetterlage & Vorhersage
 - Warnmeldungen bei Temperaturüber-/unterschreitung
 - GPS
 - Live-Streaming
 - Smart Metering (Intelligentes Stromnetz)
 - Umweltinformationssysteme (Luftgüte, etc.)


Kritischere Anwendung:

- Atomkraftwerksüberwachung
- Überhitzungen
- Überflutung
- Etc.

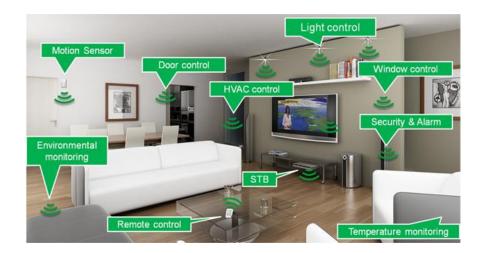
Internet of Things

- Mark Weiser (1991): <u>The Computer for the 21st Century.</u>
- Sees a world with ubiquitous computing: technology is everywhere
- BUT: it is hidden!

Internet of Things

Beispiel: Amazon Dash

Home Automation



Home Automation

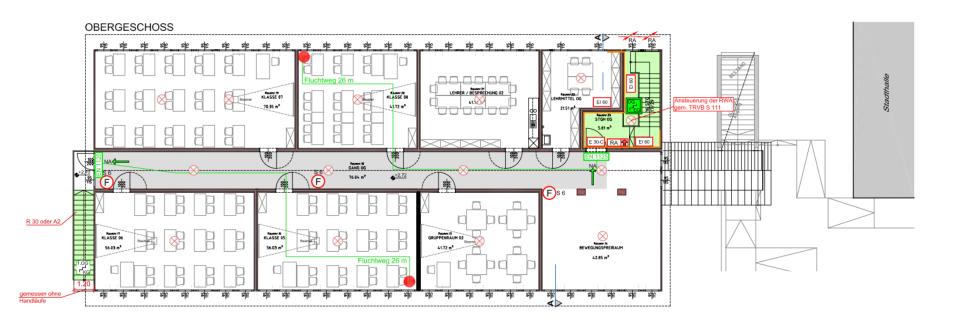
- Oberbegriff für Verfahren und Systeme in Wohnräumen und –häusern mit den Zielen
 - Erhöhung der Wohn- und Lebensqualität
 - Sicherheit
 - Effiziente Energienutzung
- Auf Basis vernetzter und fernsteuerbarer Geräte und Installationen sowie automatisierbarer Abläufe

Home Automation

- Komponenten:
 - HVAC (Heizung, Ventilation und Air conditioning)
 - Licht
 - Schließmechanismen
 - Jalousien
 - Sicherheit und Überwachung
 - Türen und Fenster
 - Fernsteuerung und Schalter
 - Wetter und Umwelt

+ Zentrale zur Kontrolle, Speicherung und Verarbeitung

Thema 2: Gebäude


B. Vockner, C. Atzl, R. Vogler – RSA iSPACE 7. Dezember 2017

Gebäudeplan öffnen

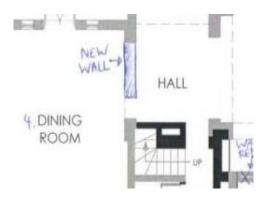
• Öffnet den Plan vom Gebäude und betrachtet ihn (bekommt ihr von mir auf USB-Stick)

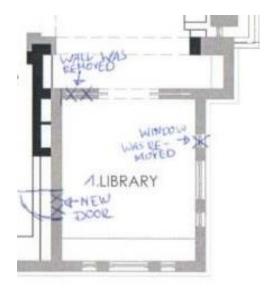
Gruppe 2: Gebäude

- Das Gebäude wurde vorab georeferenziert
- Dabei wird das Gebäude geographisch korrekt verschoben

To Do:

- Bereitet 3 Pläne vor:
 - 1. Rauminformationen + Änderungen (wenn nötig)
 - 2. Messungen (Höhen von Räumen, Fenstern und Türen)
 - Möbel (Tische und Tafel)




Plan 1: Rauminfo + Änderungen

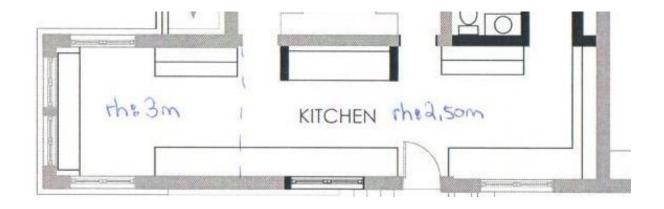
- Überprüft das Layout des Plans auf Fehler:
 - Sind alle Wände da? Sind sie an der richtigen Stelle?

Beispiel neue Wand:

Weitere Beispiele:

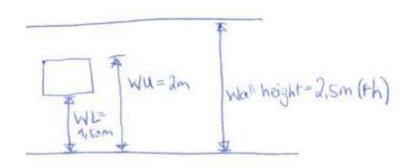
Plan 1: Rauminfo + Anderungen

- Überprüft das Layout des Plans auf Fehler:
 - Tut das gleiche für Fenster, Türen und Treppen
 - Nummeriert die Räume in eurer Zeichnung und beschriftet sie mit Raumname, Raumnummer & Raumtyp



Plan 2: Messungen (Höhen)

- Messungen
 - Messt folgende Höhen:
 - Raumhöhe (RH)

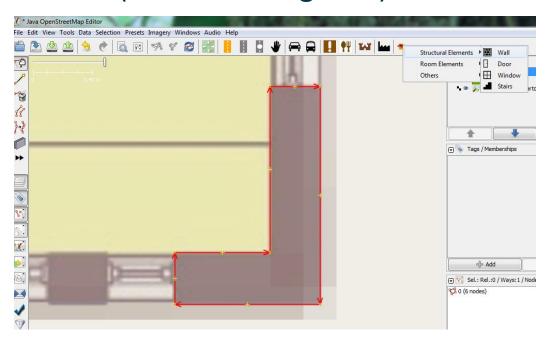


Plan 2: Messungen (Höhen)

- Messungen
 - Messt folgende Höhen:
 - Fensterhöhen:
 - Fensterunterkante (WL)
 - Fensteroberkante ab Boden (WU)
 - Wandhöhe (RH)
 - Türhöhen

Plan 3: Möbel

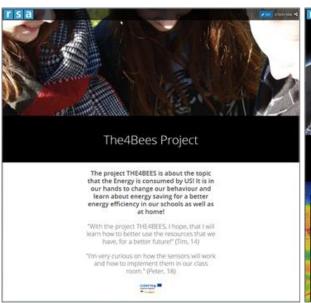
- Zeichnet gegebenenfalls einen Plan mit den Möbeln bzw. aktualisiert den vorhandenen
 - Tische
 - Tafel
 - Eventuell Beamer

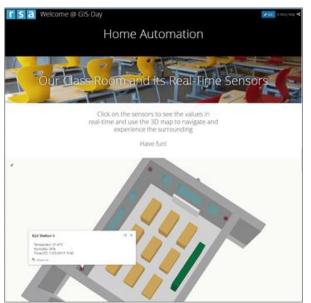

JOSM – Zusammenfassung der Arbeitsschritte

- Installiert den Java OpenStreetMap Editor (JOSM) zum Zeichnen des Gebäudes → bitte auf Englisch!! (bekommt ihr von mir auf USB-Stick)
 - Installiert die Plugins
 - Importiert das Preset "4Bees"
 - Öffnet die OSM-Karte
 - Zoomt zur Schule
 - Importiert den georeferenzierten Plan EG oder OG
 - Zeichnet die Strukturen und weist ihnen einen Typ zu

JOSM – Digitalisieren des Gebäudes

- Zeichnet die jeweiligen Strukturen und weist ihr einen Typ zu (z.B. Wand, Fenster, Türe)
 - Füllt die Informationen aus (z.B. Höhenangaben)
 - Vergesst nicht zu speichern!
 - Möbel sind ein "Spezialfall" (siehe Anleitung)





Ausblick: Beispiele von Story Maps

- http://arcg.is/2fh34He Storytelling Map 1
- http://arcg.is/2cma7uz Storytelling Map 2

Unconference

- Wie kann man aus eurer Sicht ein besseres Verständnis von Energiesparen erreichen?
 - Denkt dabei u.a. an eure Schule, euer
 Zuhause, den Arbeitsplatz eurer Eltern
 - Was ist hierzu an Basiswissen und Technik nötig?

Feedback

